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  Abstract 
  As Large Language Models (LLMs) increasingly drive AI-enabled 

observability and automation, their ability to interface effectively with 
backend systems such as Elasticsearch becomes critical. This paper presents 
an integration of the Model Context Protocol (MCP) [1] , a standardized 
tool-use interface developed by Anthropic, with Elasticsearch (ES) [2] to 
enable intelligent, real-time system health monitoring. The proposed 
solution introduces a lightweight, MCP-compliant middleware built using 
FastAPI [3], which allows LLMs to interact with the Elasticsearch system 
APIs through structured, auditable exchanges. This architecture bridges 
natural language-based diagnostics with telemetry data, enabling scalable 
and secure incorporation of Elasticsearch insights into LLM workflows. 
Experimental evaluation demonstrated that the system achieved diagnostic 
accuracy of up to 100% with sub-second response times, rivaling 
experienced human engineers. The paper includes comparative evaluations, 
architectural details, and a containerized deployment strategy, and concludes 
with an analysis of performance, scalability, and future directions. 
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1. Introduction 

The rapid advancement of intelligent systems powered by Large Language Models (LLMs) has underscored 
the need for seamless, interpretable, and dynamic integration with backend infrastructure and data sources. 
As these models take on increasingly complex automation and diagnostic roles, their ability to interact with 
external systems in a structured and secure manner becomes essential. 

The Model Context Protocol (MCP), introduced by Anthropic, provides an open and standardized 
communication framework that enables LLMs to interact reliably with external tools. MCP defines a 
consistent interface for tool invocation, input/output schema validation, and response handling, allowing for 
auditable and predictable system interactions. 

This paper presents a novel application of MCP by integrating it with Elasticsearch (ES), a widely adopted 
distributed search and analytics engine. The goal is to enable LLM-driven real-time system health monitoring 
for Elasticsearch clusters. By embedding Elasticsearch diagnostic data into an LLM context window using 
MCP, the system allows for context-aware, automated analysis and recommendations, previously the domain 
of expert human operators. 
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2. Problem Statement 

Traditional incident response mechanisms in large-scale distributed systems often rely on reactive monitoring 
approaches, where automated scripts detect isolated anomalies and trigger predefined actions. In systems 
such as Elasticsearch, this model proves inadequate. Metrics like cluster health, shard allocation, recovery 
status, and allocation failures are deeply interdependent and require contextual reasoning for accurate 
interpretation. 

While Elasticsearch exposes rich telemetry through APIs such as _cat/health, _cat/shards, and 
_cluster/allocation/explain, the burden of synthesizing these signals into actionable insights typically falls 
on expert engineers. This creates a persistent “expert-in-the-loop” dependency, where automation halts at the 
threshold of human reasoning. 

Conventional automation, often based on static rule-based logic, cannot holistically reason across multiple 
interrelated metrics. As a result, it cannot autonomously infer root causes or propose intelligent remediations 
in complex fault scenarios. 

The proposed integration of the Model Context Protocol (MCP) with LLMs addresses this gap by enabling 
structured ingestion of Elasticsearch diagnostics into the LLM context. This allows the model to interpret the 
collective system state and reason about it in real time, thereby transitioning from isolated metric monitoring 
to intelligent, context-aware decision support. By bridging raw telemetry with natural language-driven 
insights, the system reduces reliance on human operators and enables expert-level analysis through 
automated means. 

3. Literature Review 

3.1. Evolution of MCP 
 
The Model Context Protocol (MCP), developed by Anthropic, represents a significant advancement in 
enabling LLMs to interact with external tools through structured, schema-based communication. MCP 
standardizes tool invocation by defining input/output schemas, secure API access, and consistent response 
formats. This innovation facilitates dynamic, feedback-driven system integrations and enables LLMs to 
perform tool-augmented tasks with improved reliability and transparency. 
 

3.2. Elasticsearch in Observability 
 
Elasticsearch has long been a cornerstone of the ELK (Elasticsearch, Logstash, Kibana) stack, playing a 
central role in log analytics, full-text search, and real-time observability solutions. Prior research, including 
foundational work by Gormley and Tong (2015), emphasized Elasticsearch’s scalability and RESTful API 
design. However, these implementations typically functioned in static environments without intelligent 
automation or LLM integration, limiting their utility in dynamic, decision-driven observability workflows. 
 

3.3. Tool-Augmented LLM Architectures 
 
Recent advancements in Retrieval-Augmented Generation (RAG) [4] and Toolformer-style [5] architectures 
have demonstrated the potential of LLMs enhanced with real-time tool access. These systems outperform 
static prompt-based models by leveraging external information sources. However, prior approaches lacked a 
standardized mechanism for tool communication. The introduction of MCP fills this gap, yet its application 
to infrastructure tools like Elasticsearch remains underexplored. 

3.4. Research Gap 
 
While LLM and Elasticsearch integrations have been explored in the context of search augmentation and 
retrieval pipelines, few efforts have focused on system health monitoring. Moreover, existing 
implementations do not leverage standardized communication protocols such as MCP. This leaves a gap in 
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the research landscape for intelligent, protocol-driven observability solutions that combine the reasoning 
capabilities of LLMs with real-time Elasticsearch diagnostics. 
 

4. Proposed System Architecture 
To enable the integration of the Model Context Protocol (MCP) with Elasticsearch, the proposed system, as 
shown in Figure 1,  introduces a modular architecture consisting of three primary components: the LLM 
engine, a lightweight MCP middleware server, and the Elasticsearch backend. This section outlines the roles 
of each component and describes the interaction flow necessary for real-time system health diagnostics. 

 

 
 
 

Figure 1. Proposed Architecture For MCP-Driven ES Health Check 
 

4.1. LLM Component 

The LLM serves as the reasoning engine in the proposed architecture. It initiates tool requests using the MCP 
schema, interprets the structured responses returned by the middleware, and synthesizes system-level insights 
or recommended actions. In this implementation, Claude v3.5 [6] from Anthropic is used as the LLM. 

The LLM operates without modification to its generation parameters (e.g., temperature or creativity settings), 
relying solely on the structured context provided via MCP to make informed decisions. By embedding 
Elasticsearch telemetry within its prompt context, the LLM can evaluate system health, detect anomalies, and 
suggest remediations using natural language explanations. 

This integration shifts the system’s diagnostic capability from manual expert interpretation to real-time, 
language-driven intelligence, while preserving auditability and reproducibility via schema-bound 
interactions. 

4.2. Model Context Protocol Middleware Component 

MCP facilitates structured interaction between LLMs and external tools by defining: 

● Tool specifications (input/output schemas) 
 

● Secure API invocation 
 

● Structured response handling 
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In this architecture, the LLM (e.g., Claude) communicates with the MCP middleware by sending 
standardized MCP-formatted requests. The middleware, implemented using FastAPI, acts as a bridge, 
converting these requests into Elasticsearch API calls. It then parses and normalizes the responses, delivering 
structured results back to the LLM. This replaces manual interpretation with consistent, machine-readable 
insights, allowing the LLM to reason contextually about the system state. 

 

4.3. Elasticsearch APIs For Health Monitoring 

The health of the Elasticsearch cluster is assessed using the following native _cat/* [7] APIs: 

● _cat/health – Provides high-level cluster [8] health status 
 

● _cat/nodes – Reports node-level [8] resource metrics 
 

● _cluster/allocation/explain – Explains shard [8] allocation decisions 
 

● _cat/shards – Details the shard distribution across nodes 
 

● _cat/recovery – Indicates ongoing shard recovery operations 
 

These APIs form the foundation of the observability layer consumed by the MCP middleware and, 
ultimately, the LLM. 

 

4.4. Challenges In The Proposed Implementation 

Several challenges arise in integrating Elasticsearch with MCP due to their differing operational paradigms: 

● Lack of Native MCP Support in Elasticsearch: Elasticsearch does not inherently support MCP, 
requiring an intermediary layer to interpret and format interactions. 
 

● Structured Output Normalization: Elasticsearch responses are often loosely structured or textual, 
making them unsuitable for direct LLM consumption. 
 

● Performance Overhead: Real-time queries from LLMs must be optimized to avoid imposing 
unnecessary load on the Elasticsearch cluster. 
 

The proposed system addresses these issues as follows: 

● MCP Support: A FastAPI-based middleware server was developed to act as an MCP-compliant 
bridge, enabling schema-defined communication without modifying Elasticsearch itself. 
 

● Output Normalization: The middleware parses raw Elasticsearch responses into structured JSON 
objects aligned with MCP expectations, ensuring consistent LLM interpretation. 
 

● Performance Optimization: To reduce overhead, the middleware selectively invokes lightweight 
ES endpoints on demand and employs caching mechanisms where appropriate, thus balancing 
responsiveness with system load. 

 
 

5. Case Study: MCP-Driven Elasticsearch Health Checker and Its Implementation 
 

 
18 International journal of Management, IT and Engineering 

http://www.ijmra.us, Email: editorijmie@gmail.com 
 

http://www.ijmra.us


 ISSN: 2249-0558 �Impact Factor: 7.119  
 

 
 

5.1 Setup Overview 
The MCP-Elasticsearch integration was validated using a hybrid setup comprising the following components: 

● LLM: Claude v3.5 accessed via Anthropic Tooling Sandbox [9]. 
 

● Middleware: A FastAPI-based MCP server deployed as a containerized microservice. 
 

● Elasticsearch: Version 8.11.2 running on a 3-node cluster, each with 8-core CPUs, 32 GB RAM, 
and 2 TB SSDs. 
 

● Network: The cluster was hosted within a private Virtual Private Cloud (VPC) with internal-only 
API access. 
 

This setup allowed isolated testing of fault scenarios while ensuring secure communication between 
components. 

5.2 Setup Details 
 
The implementation involved the development and configuration of each system component to support 
MCP-based tool invocation and real-time telemetry retrieval. 
 

5.2.1. LLM 
 
Claude v3.5 was utilized in its default configuration. No specific tuning or reinforcement settings (e.g., 
temperature adjustments or hallucination suppression) were applied. The model received structured telemetry 
input from the middleware and generated natural language assessments and remediation suggestions. 
 

5.2.2. MCP Middleware 
 
A FastAPI-based server was implemented to expose an MCP-compatible endpoint for LLM interaction: 

● Endpoint: POST /elasticsearch_health_tool 
 

● Supported Commands: health, nodes, allocation, shards, recovery 

These commands correspond to Elasticsearch health-check APIs and can be extended as needed. The 
middleware enforces strict input and output schema validation, as defined below: 

{ 
  "name": "elasticsearch_health_tool", 
  "description": "Check ES cluster health status", 
  "input_schema": { 
    "type": "object", 
    "properties": { 
      "command": { 
        "type": "string", 
        "enum": ["health", "nodes", "allocation", "shards", "recovery"] 
      } 
    } 
  }, 
  "output_schema": { 
    "type": "object", 
    "properties": { 
      "result": { "type": "string" } 
    } 
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  } 
} 
 

To support scalable deployment, the middleware was containerized using Docker and orchestrated via 
Docker Compose  [10] . This allowed rapid provisioning on Kubernetes [11] nodes or other cloud-native 
platforms. 

6. Evaluation Methodology, Criteria, and Metrics 
To validate the effectiveness of the MCP-enabled Elasticsearch health monitoring system, a structured 
evaluation methodology was designed. This section outlines the experimental approach, assessment criteria, 
and performance metrics used to compare the LLM-driven system against traditional human-driven 
diagnosis. 
 

6.1 Evaluation Method 
 
The system was evaluated by four experienced site reliability engineers (SREs) [12]  using a controlled 
Elasticsearch environment that simulated a range of real-world fault conditions. The process involved: 

● Testbed Preparation: A 3-node Elasticsearch cluster was configured with known fault scenarios, 
including node failures, misconfigurations, and resource constraints. 
 

● Human Evaluation: SREs were given full access to Kibana [13] dashboards and Elasticsearch 
APIs. They were asked to diagnose the system manually without any alerts, automation, or LLM 
assistance. 
 

● LLM Evaluation: The same fault scenarios were submitted to the MCP-enabled FastAPI 
middleware, which invoked the appropriate Elasticsearch APIs and delivered structured responses to 
the LLM (Claude v3.5). The LLM then provided diagnostic insights and suggested remediations. 
 

Three tiers of complexity were evaluated: 

● Single-Issue Scenarios (e.g., node departure causing yellow or red cluster health states) 
 

● Dual-Issue Scenarios (e.g., node failure combined with misconfigured cluster settings) 
 

● Complex Scenarios (e.g., node failure, incorrect settings, and high disk usage simultaneously) 

6.2 Evaluation Criteria 

Each test case was evaluated based on the following criteria: 

● Time to Identify Issues: Duration taken to recognize and explain all fault conditions. 
 

● Accuracy of Diagnosis: Correctness of issue identification, validated against known ground truth. 
 

● Completeness of Remediation Steps: The extent to which proposed actions resolved or mitigated 
the issues. 
 

All sessions were time-stamped and cross-validated by Elasticsearch administrators to ensure the consistency 
and reliability of observations. 

Additionally, each core Elasticsearch diagnostic command (health, nodes, shards, allocation, recovery) was 
executed 10 times under varying conditions, including: 
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● Normal load 
 

● Node degradation 
 

● Shard imbalance 
 

The LLM was prompted with structured questions, such as: 

● “What is the current cluster health?” 
 

● “Are there any shard allocation issues?” 
 

● “Is the shard distribution balanced?” 

Responses were compared against expected system states and administrator assessments. 

6.3 Evaluation Metrics 
 
To objectively assess system performance, the following key metrics were recorded: 

● Response Time: Time taken by the middleware to retrieve Elasticsearch data and deliver it to the 
LLM. 
 

● Accuracy: Consistency of LLM-derived interpretations with verified system conditions. 
 

● LLM Reasoning Effectiveness [14]: Ability of the LLM to generate correct and actionable 
recommendations. 
 

● Security Overhead: Latency added by authentication and authorization mechanisms (e.g., API 
token validation) [15]. 
 

These metrics enabled a comparative analysis between LLM-driven and human-led diagnostics, offering 
insight into the feasibility and reliability of LLMs in system health monitoring contexts. 

 

7. Results 
 
This section presents the results of the experimental evaluation, capturing both performance metrics of the 
MCP-driven system and a comparative analysis between LLM-based and human diagnostics across various 
scenario complexities. 
 
 

7.1 Performance Metrics 
 
The following table summarizes the key performance metrics observed during tool execution across all 
evaluated scenarios. Each metric was averaged over 50 tool invocations: 
 
 

Table 1. The metrics observed and the average performance results 
Metric Description Observed Value 

LLM Reasoning Latency Time between the MCP request and contextual 
LLM insight generation 

~250ms 

ES API Call Latency Time taken to fetch metrics from ES 50-135ms 
Middleware Overhead Time added by FastAPI + parsing logic ~15 ms 
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Auth Overhead Latency due to ES basic auth + API token checks ~10 ms 
Accuracy Rate Percentage of successful, meaningful LLM 

interpretations 
98–100% across all 

commands 
Schema Validation Errors Any malformed MCP inputs or failed outputs 0 

Total End-to-End 
Latency 

Combined tool invocation, API call, and LLM 
response 

~310–400 ms per tool 
use 

These results indicate that the system consistently produced high-fidelity interpretations within sub-second 
latencies. Notably, there were zero schema validation failures across all test cases, and authentication 
overhead remained minimal (~10 ms per request). The LLM demonstrated reliable detection of critical 
conditions such as unassigned shards, delayed allocations, and imbalance issues, often suggesting appropriate 
corrective actions without external prompts. 

 

7.2. Comparative Evaluation: Human vs LLM Diagnosis 
 
To assess the practical effectiveness of the LLM's reasoning capabilities, we compared its diagnostic 
performance against experienced human engineers under different fault scenarios. The table below highlights 
diagnosis times and accuracy for both approaches: 
 

Table 2. The comparison between human and LLM+MCP diagnosis under various problem complexities 
Scenar
io Type 

System Fault 
Condition 

Human 
Evaluation 

Time 

LLM 
Evaluation 

Time 

Accuracy 
(Human) 

Accuracy 
(LLM + 
MCP) 

Observation 

Single 
Issue 

Node left the 
cluster, causing 

the yellow 
cluster 

~60 sec ~0.5sec 100% 100% Both identified the 
issue instantly 

Single 
Issue 

Node left the 
cluster, causing 
the red cluster 

~90 sec ~0.5sec 100% 100% Both identified the 
issue instantly 

Dual 
Issue 

Node left + 
only_primary 

shards allowed 
in cluster 
settings 

~5–7 min ~2sec 95% 98% LLM recommended 
re-enabling replica 
allocation correctly 

Dual 
Issue 

Node left + slow 
recovery of 

shard allocation 

~7-10 min ~5sec 98% 100% LLM recommended 
that incoming and 

outgoing recoveries be 
throttled due to cluster 

settings and 
suggestions to 
increase them 

Compl
ex 

Issue 

Node left + 
incorrect cluster 
setting + high 

disk usage 
 

~10-15 min ~4.5 sec 90% 96% Humans required 
cross-referencing logs; 

LLM inferred all 
issues and suggested 

disk-based shard 
rebalancing 

These comparisons highlight that the LLM, when guided by structured MCP inputs, matched or exceeded the 
diagnostic accuracy of human engineers while reducing response time by several orders of magnitude. In 
complex multi-symptom scenarios, the LLM provided coherent, actionable insights faster than manual 
methods, underscoring its potential as a powerful assistant for real-time system health monitoring. 
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8. Conclusion 

This paper presents a novel integration of the Model Context Protocol (MCP) with Elasticsearch to enable 
intelligent, LLM-driven system health monitoring. By addressing a longstanding challenge in 
observability;;the reliance on expert operators to interpret complex, interdependent system metrics, this work 
demonstrates how structured, schema-based communication can empower Large Language Models (LLMs) 
to act as autonomous diagnostic agents. 

Through the development of a lightweight FastAPI-based MCP middleware, the system facilitates secure, 
auditable, and extensible interaction between an LLM and Elasticsearch’s native APIs. The solution requires 
no modifications to Elasticsearch itself and can be deployed as a containerized microservice, making it 
scalable and easily adoptable in modern cloud-native environments. 

Empirical evaluations revealed that the LLM, when guided by structured MCP inputs, achieved diagnostic 
accuracy on par with or exceeding that of experienced site reliability engineers. In scenarios of varying 
complexity, from single-node failures to multi-metric degradations, the LLM consistently provided 
actionable insights with sub-second response times. This significantly reduces mean time to resolution 
(MTTR) and supports a transition from reactive alerting to proactive system intelligence. 

The primary novelty of this approach lies in combining a standardized LLM tool interface with a traditionally 
non-semantic telemetry system, effectively bridging the gap between passive monitoring and intelligent, 
language-driven diagnostics. 

Future work will explore extending this architecture to support multi-source telemetry, including Prometheus 
[16] metrics, Grafana [16] dashboards, and log pipelines, along with automated remediation, anomaly-aware 
prompting [17], and broader interoperability with other observability platforms. 
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